CHAPTER 11 **SCIENCE INQUIRY**

Velocity-Time Graphs

BLM 11-10

Goal • Examine the relationships between velocity-time graphs and acceleration.

What to Do

Answer each question in the space provided. A motion detector was used to gather all the data in the tables.

1. Use the data in each table to draw a velocity-time graph. Then calculate the slope of the graph.

(a)

t (s)	₹ (m/s)	ਰ (m/s²)
0	0	2
1	2	2
2	4	2
3	6	2
4	8	2
5	10	2

Slope of velocity-time graph =

Slope =
$$\frac{\Delta y}{\Delta x} = \frac{10-0}{5-0}$$

= $\frac{10}{5} = 2 \text{ m/s}^2$

How does the slope of the line compare with the acceleration of the object?

It is the Same.

CHAPTER 11 **SCIENCE INQUIRY**

Velocity-Time Graphs (continued)

BLM 11-10

(b)

t(s)	₽ (m/s)	∄ (m/s²)
0	30	5
1	25	-5
2	20	- 5
3	15	- 5
4	10	-5
5	5	-5

Slope of velocity-time graph =

Slope =
$$\frac{\Delta y}{\Delta z} = \frac{5-30}{5-0}$$

= $\frac{-25}{5} = \frac{-5m}{5^2}$

How does the slope of the line compare with the acceleration of the object?