GENERAL
MATH-RELATED
SCIENCE SKILLS

Scientific Notation

BLM G-25

Goal • Practise writing very small and very large numbers using scientific notation.

Background

Extremely large or small numbers are awkward to record in full. Scientists find it easier to report such numbers in a standard form referred to as scientific notation.

For scientific notation, one digit (other than 0) is placed before the decimal point. The other significant digits are placed after the decimal point.

What to Do

- Read page 587 in SCIENCEPOWER™ 10.
- Use the information from there to help you answer the questions below.

Questions

1.	than as 58 000 000 km. Explain what 10^7 mea	stance between Mercury and the Sun as 5.8×10^7 km rather ns.
2.	Describe the effect on the exponent of moving a decimal the following directions:	
	(a) to the left	
3.	Rewrite the following measurements in scientific notation:	
	(a) 0.000045 km	(b) 456 000 000 g
	(c) 90 200 s	(d) 0.0076 cm
	(e) 290 000 N	(f) 0.00457 W
	(g) 0.000042 km	(h) 456 L
	(i) 20 s	(j) 0.0623 W
4.	Rewrite the following in full.	
	(a) $9.6 \times 10^4 \mathrm{m}$	(b) 0.56×10^{-4} cm
	(c) 3.4×10^{-3} m	(d) $1.6 \times 10^2 \mathrm{m}$
	(e) 4.56×10^{-1} cm	(f) $3 \times 10^{0} \text{ m}$

SCIENTIFIC NOTATION

Name _____

Scientists very often deal with very small and very large numbers, which can lead to a lot of confusion when counting zeros! We have learned to express these numbers as powers of 10.

Scientific notation takes the form of M x 10^n where $1 \le M < 10$ and n represents the number of decimal places to be moved. Positive n indicates the standard form is larger than zero, whereas negative n would indicate a number smaller than zero.

Example 1: Convert 1,500,000 to scientific notation.

Move the decimal point so that there is only one digit to its left, a total of 6 places.

 $1,500,000 = 1.5 \times 10^6$

Example 2: Convert 0.00025 to scientific notation.

For this, move the decimal point 4 places to the right.

 $0.00025 = 2.5 \times 10^{-4}$

(Note that when a number starts out less than one, the exponent is always negative.)

Convert the following to scientific notation.

1.
$$1.5 \times 10^3 =$$

2.
$$1.5 \times 10^{-3} =$$

3.
$$3.75 \times 10^{-2} =$$

4.
$$3.75 \times 10^2 =$$

5.
$$2.2 \times 10^5 =$$

6.
$$3.35 \times 10^{-1} =$$

7.
$$1.2 \times 10^{-4} =$$

8.
$$1 \times 10^4 =$$

9.
$$1 \times 10^{-1} =$$

10.
$$4 \times 10^{\circ} =$$

Scientific Notation/Significant Digits Worksheet 1

1. Convert each of the following into scientific notation.

- a) 3427
- b) 0.00456
- c) 123,453
- d) 172
- e) 0.000984
- f) 0.502
- g) 107.2
- h) 0.0000455
- i) 2205.2
- j) 0.0473
- k) 650,502

2. Determine the number of significant figures in each of the following:

a) 3427

g) 3100.0

m) 0.982

b) 0.00456

h) 0.0114

n) 0.0473

c) 123,453

i) 107.2

o) 650,502

d) 172

j) 0.0000455

e) 0.000984

k) 2205.2

f) 0.502

1) 30.0

3. Convert each into decimal form.

a) 1.56×10^4

e) 2.59×10^5

b) 5.6×10^{-2}

f) 1.369×10^{-2}

c) 3.69×10^{-2}

g) 6.9×10^4

d) 7.369×10^5

4. Calculate the following. Give the answer in correct scientific notation.

a)
$$\frac{3.95 \times 10^2}{1.5 \times 10^6}$$

b)
$$\frac{4.44 \times 10^7}{2.25 \times 10^5}$$

c)
$$\frac{1.05 \times 10^{-26}}{4.2 \times 10^{56}}$$

d)
$$\frac{6.022 \times 10^{23}}{3.011 \times 10^{-56}}$$

e)
$$(3.5 \times 10^2)(6.45 \times 10^{10})$$

f)
$$(4.50 \times 10^{-12})(3.67 \times 10^{-12})$$

g)
$$(2.5 \times 10^9)(6.45 \times 10^4)$$

h)
$$(6.88 \times 10^2)(3.45 \times 10^{-10})$$

5. Round each of the following to 3 significant figures.

e)
$$2.895 \times 10^{21}$$

6. Calculate the answer, use the correct number of significant figures.

a)
$$(0.32)(14.50)(120) =$$

b)
$$(24.1)/(0.005) =$$

c)
$$(3.9)(6.05)(420) =$$

d)
$$(14.1)/5 =$$