8. Representing Acceleration: Velocity - Time Graphs

 Recall: When graphing non-uniform motion on a distance – time graph we get the resulting type of graph

- Curved lines are much more difficult to work with (we know the car's speed is increasing, but by how much)
- To simplify analysis, we plot non-uniform motion on a Velocity-Time Graph

Distance-time graph for a car moving with non-uniform speed

- Velocity-Time Graph:
 - 1) shows the relationship between velocity (speed) and time
 - : velocity is plotted on the y-axis and time is plotted on the x-axis
 - : the resulting line represents the acceleration

- 2) shows the distance an object travelled
 - the area beneath the line represents the distance
 - : area of a triangle = bh

Example: Acceleration on a Bicycle

Time (s)	Speed (m/s)
0.0	0.0
10.0	2.0
20.0	4.0
30.0	6.0
40.0	8.0
50.0	10.0

• A velocity-time graph can be used to: <u>calculate acceleration</u> = slope of the line : <u>calculate distance travelled</u> = area under the line

are.
$$a = rise = \Delta y$$

= $\frac{10-0}{50-0}$

= $\frac{10}{50}$

= 0.20 m/s²

Acceleration = 0.2m/s²

Distance = 250m